Multiple optimality criteria support Ornithoscelida
نویسندگان
چکیده
A recent study of early dinosaur evolution using equal-weights parsimony recovered a scheme of dinosaur interrelationships and classification that differed from historical consensus in a single, but significant, respect; Ornithischia and Saurischia were not recovered as monophyletic sister-taxa, but rather Ornithischia and Theropoda formed a novel clade named Ornithoscelida. However, these analyses only used maximum parsimony, and numerous recent simulation studies have questioned the accuracy of parsimony under equal weights. Here, we provide additional support for this alternative hypothesis using Bayesian implementation of the Mkv model, as well as through number of additional parsimony analyses, including implied weighting. Using Bayesian inference and implied weighting, we recover the same fundamental topology for Dinosauria as the original study, with a monophyletic Ornithoscelida, demonstrating that the main suite of methods used in morphological phylogenetics recover this novel hypothesis. This result was further scrutinized through the systematic exclusion of different character sets. Novel characters from the original study (those not taken or adapted from previous phylogenetic studies) were found to be more important for resolving the relationships within Dinosauromorpha than the relationships within Dinosauria. Reanalysis of a modified version of the character matrix that supports the Ornithischia-Saurischia dichotomy under maximum parsimony also supports this hypothesis under implied weighting, but not under the Mkv model, with both Theropoda and Sauropodomorpha becoming paraphyletic with respect to Ornithischia.
منابع مشابه
Multiple criteria decision making: eight concepts of optimality
Multiple Criteria Decision Making (MCDM) is firmly rooted in an alternative concept of optimality where multiple (rather than single) criteria characterize the notion of “the best” (or optimal), as is prevalent in the areas of economics, engineering, management and business. These are often constrained problems where search for an optimal solution requires some form of evaluating criteria perfo...
متن کاملRecent developments towards optimality in multiple hypothesis testing
There are many different notions of optimality even in testing a single hypothesis. In the multiple testing area, the number of possibilities is very much greater. The paper first will describe multiplicity issues that arise in tests involving a single parameter, and will describe a new optimality result in that context. Although the example given is of minimal practical importance, it illustra...
متن کاملA new method to determine a well-dispersed subsets of non-dominated vectors for MOMILP problem
Multi-objective optimization is the simultaneous consideration of two or more objective functions that are completely or partially inconflict with each other. The optimality of such optimizations is largely defined through the Pareto optimality. Multiple objective integer linear programs (MOILP) are special cases of multiple criteria decision making problems. Numerous algorithms have been desig...
متن کاملOPTIMUM GENERALIZED COMPOUND LINEAR PLAN FOR MULTIPLE-STEP STEP-STRESS ACCELERATED LIFE TESTS
In this paper, we consider an i.e., multiple step-stress accelerated life testing (ALT) experiment with unequal duration of time . It is assumed that the time to failure of a product follows Rayleigh distribution with a log-linear relationship between stress and lifetime and also we assume a generalized Khamis-Higgins model for the effect of changing stress levels. Taking into account that the...
متن کاملGaps in Support Vector Optimization
We show that the stopping criteria used in many support vector machine (SVM) algorithms working on the dual can be interpreted as primal optimality bounds which in turn are known to be important for the statistical analysis of SVMs. To this end we revisit the duality theory underlying the derivation of the dual and show that in many interesting cases primal optimality bounds are the same as kno...
متن کامل